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Abstract—The synthesis of enantiomerically pure �-amino acid (2S,3aS,6R,7aS)-2-carboxy-6-chlorooctahydroindole (L-Ccoi) is
described. NMR data of L-Ccoi 3 are very different from those reported for the azabicyclic core of aeruginosins 205, indicating
that the structure of these aeruginosins needs to be revised. © 2003 Elsevier Science Ltd. All rights reserved.

Aeruginosins constitute a new group of structurally
related cyanobacterial peptides, bearing a C-6 function-
alized cis-octahydroindole-2-carboxylic acid derivative
as their common structural feature.1–3 The most usual
aeruginosin core is known as L-Choi [(2S,3aS,6R,7aS)-
2-carboxi-6-hydroxyoctanhydroindole I], for which
three approaches have been described: (a) from a
reduced tyrosine derivative by means of a diastereose-
lective cyclization,4 (b) from a tyrosine derivative via a
diastereoselective cyclooxidation,5 and (c) from a pro-
line derivative and elaboration of the fused cylohexanol
ring.6 Additionally, syntheses of 3a,7a-diepi-L-Choi II7

and 5�-hydroxy-L-Choi III, the latter from a proline
derivative and ring-closing metathesis8 have also been
reported. Total syntheses of aeruginosin 298-A,4b,5,9

298-B,4b SF608,10 and EI461,7 as well as the related
dysinosin A have been achieved. Interestingly, in three
of these syntheses there has been a revision of the
proposed structure and a reassignment of the real struc-
ture (Fig. 1).11

As part of our work on the total synthesis of aerugi-
nosins, we were interested in studying an approach to
aeruginosins 205 (Fig. 2),12,13 which have been found to
be potent inhibitors of trypsin and thrombin. For this
purpose it was necessary to synthesize the core of these
peptides, which consists of the new bicyclic amino acid
(2S,3aS,6R,7aS) - 2 - carboxy - 6 - chlorooctahydroindole
(L-Ccoi). We report here the synthesis of this new
amino acid and demonstrate that it is different from the
one reported to be in the core of these natural products,
thus opening up the need for a revision of the claimed
structure of aeruginosins 205.

The synthesis of L-Ccoi was carried out as outlined in
Scheme 1 and takes advantage of our previously
reported stereocontrolled synthesis of the bicyclic
ketone 1.4 Starting from O-methyl-L-tyrosine, the
bicyclic ketone 1 was obtained in 40% yield by a
five-step sequence consisting of: (i) Birch reduction; (ii)
aminocyclization of the dihydroanisole formed by treat-

Figure 1.
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Figure 2. Proposed structures for aeruginosins 205.

Scheme 1. Synthesis of orthogonally diprotected L-Ccoi.

equilibration process of the mixture of �-amino ketones
endo–exo ; (v) exchange of the N-protecting group of
the endo isomer by debenzylation in the presence of
Boc2O. Reduction of ketone 1 with NaBH4 at −78°C in
MeOH in the presence of CeCl3 stereoselectively gave
alcohol 2, in which the hydroxyl group is equatorially
located according to the preferred conformation of this
azabicyclic compound. Next, alcohol 2 was converted
into its �-chloro analogue 3 in a stereospecific manner
by PPh3–CCl4 in acetonitrile under mild conditions14

(Scheme 1).

Compound 3 adopts the preferred ring conformation
that avoids the A(1,3) strain between the carbamate and
the C(7) methylene group. In this conformation, which
was assigned unequivocally by 2D NMR experiments,
the chlorine atom is located axially. The stereostructure
of azabicyclic compound 3 was confirmed by X-ray
diffraction analysis (Fig. 3).15 Table 1 shows the NMR
data of 3, recorded above the coalescence temperature
of the cis–trans rotamers (50°C), which clearly disagree
with those reported for the Ccoi core of aeruginosins
205. Comparison of the NMR values of protons and
carbons in the domain C(5)�C(6)�C(7) reveals signifi-
cant differences (Table 1). Most notably, the methine
proton H-6 of the Ccoi resonates at � 4.60, whereas
that of aeruginosin 205-A appears at � 3.83. Moreover,
significant differences in the 13C NMR spectra of 3 and
aeruginosin 205-A were observed for the carbons (C-5,
C-6, C-7), which resonate in 3 at � 27.2, 59.1, and 33.8,
respectively, whereas those in the natural compound
appear at � 24.7, 68.7, and 28.6, respectively. Therefore,
the substituent at C-6 in aeruginosins 205 does not
seem to be a chlorine atom. In order to reinforce this
point of view and to obtain additional information we

have prepared the N(Ac)-Ccoi(CONHMe) 416 and its
NMR data were again very different from the values
reported for the azabicyclic �-amino acid found in
aeruginosins 205.

In conclusion, we have reported an efficient and
stereoselective route to the new � amino acid (−)-3,
which is the proposed core of aeruginosins 205. When
the spectral data of these aeruginosins and synthetic 3
are compared it is clear that the azabicyclic rings differ

Figure 3. X-Ray diffraction structure (ORTEP) of 3.
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Table 1. NMR data of octahydroindole core of aeruginosin 205-A, Ccoi 3 and 4a

Core of aeruginosin 205-A Ccoi 3b N(Ac)-Ccoi(NHMe) 4c

1H mult, J (Hz) 13C 1H mult, J (Hz) 13C 1H trans/cis rotamer 13C

4.21 dd (9.7, 8.0) 59.8 4.17 dd (9.6, 7.8) 58.5 4.14 dd/4.26 dd (10, 8)/(10, 8) 59.6/60.6C-2
2.02 ddd (13.1, 8.0, 6.8) 30.7 2.13 ddd (12.6, 8, 7.2)C-3 � 31.6 2.01 m 31.3/33.3
1.85 ddd (12, 6) 1.90 mC-3 � 1.77 ddd/1.85 m (12.5, 12, 11)
2.24 dddd (13.1, 6.8, 6.4, 5.8) 35.9 2.34 ddddd (12, 6, 6, 6, 0.5)C-3a 35.0 2.32 ddddd/2.21 (12, 6,6,6, 0.5) 36.1/34.5
2.13 m 19.4 2.03 dddd (13.5, 6, 5.5, 2.5)C-4 eq 19.7 2.01 m 19.9/20.1
1.48 m 1.55 mC-4 ax 1.59 m

C-5 eq 1.53 m 24.7 1.90 m 27.2 1.85 m 27.1/27.6
1.53 m 1.65 mC-5 ax 1.59 m

C-6 3.83 dddd (2.4, 2.4, 2.4, 2.4) 68.7 4.60 dddd (3, 3, 3, 3) 59.1 4.70 dddd/4.60 (3, 3, 3, 3) 60.0/60.0
2.28 ddd (14.0, 6.4, 2.4) 28.6 2.24 br d (14.4)C-7 eq 33.8 2.11 m/ 1.85 m 34.4/33.7
1.59 ddd (14.0, 11.9, 2.4) 1.90 mC-7 ax 2.11 m/1.85 m (15, 11, 4)
4.33 ddd (11.9, 6.4, 6.4) 54.3 4.02 ddd (10.5, 6, 6)C-7a 52.9 4.04 ddd/4.30 (10.5, 6, 6) 54.6/53.0

a All spectra were recorded in DMSO-d6 and the peak assignments are derived from COSY, HMBC/HSQC and NOESY experiments.
b Recorded at 50°C. Other signals: � 27.9, 78.9, 153.0 (Boc); 51.7, 173.1 (CO2Me).
c Other signals: for trans rotamer � 22.1, 167.9 (Ac); 25.9, 172.4 (CONHMe); for cis rotamer � 21.9, 168.8 (Ac); 26.0, 172.4 (CONHMe).

and hence the assigned constitution of aeruginosins 205
must be revised. The elucidation of the structure of
aeruginosins 205 remains an unsolved puzzle.
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